
Finite Element Method - 2D Mesh
Generator - Metfem2D

Finite Element Method. Abstract.

The presented article contains a 2D mesh generation routine optimized with the
Metropolis algorithm. The procedure enables to produce meshes with a
prescribed size h of elements. These finite element meshes can serve as
standard discrete patterns for the Finite Element Method (FEM). Appropriate
meshes together with the FEM approach constitute an effective tool to deal
with differential problems. Thus, having them both one can solve the 2D
Poisson problem. It can be done for different domains being either of a regular
(circle, square) or of a non – regular type. The proposed routine is even
capable to deal with non – convex shapes.

Finite Element Method. Introduction.

The variety of problems in physics or engineering is formulated by appropriate
differential equations with some boundary conditions imposed on the desired
unknown function or the set of functions. There exists a large literature which
demonstrates numerical accuracy of the finite element method to deal with
such issues[1]. Historical development and present – day concepts of finite
element analysis are widely described in references [1]. In Sec. 2 of the paper
and in its Appendixes A – D, the mathematical concept of the Finite Element
Method is presented. In presented article the well – known Laplace and
Poisson equations will be examined by means of the finite element method
applied to an appropriate mesh. The class of physical situations in which we
meet these equations is really broad. Let us recall such problems like heat

https://www.taketechease.com/siteview.html
https://www.taketechease.com/
https://www.taketechease.com/

conduction, seepage through porous media, irrotational flow of ideal fluids,
distribution of electrical or magnetic potential, torsion of prismatic shafts,
lubrication of pad bearings and others [2]. Therefore, in physics and
engineering arises a need of some computational methods that allow to solve
accurately such a large variety of physical situations.The considered method
completes the above-mentioned task. Particularly, it refers to a standard
discrete pattern allowing to find an approximate solution to continuum problem.
At the beginning, the continuum domain is discretized by dividing it into a finite
number of elements which properties must be determined from an analysis of
the physical problem (e. g. as a result of experiments). These studies on
particular problem allow to construct so – called the stiffness matrix for each
element that, for instance, in elasticity comprising material properties like
stress-strain relationships [3]. Then the corresponding nodal loads [4]
associated with elements must be found.The construction of accurate elements
constitutes the subject of a mesh generation recipe proposed by the author
within the presented article. In many realistic situations, mesh generation is a
time – consuming and error – prone process because of various levels of
geometrical complexity. Over the years, there were developed both semi –
automatic and fully automatic mesh generators obtained, respectively, by using
the mapping methods or, on the contrary, algorithms based on the Delaunay
triangulation method [5], the advancing front method [6] and tree methods [7].
It is worth mentioning that the first attempt to create fully automatic mesh
generator capable to produce valid finite element meshes over arbitrary
domains has been made by Zienkiewicz and Phillips [8].The advancing front
method (AFM) starts from an initial node distribution formed on a basis of the
domain boundary, and proceeds through a sequential creation of elements
within the domain until its whole region is completely covered by them. The
presented mesh algorithm takes advantage from the AFM method as it is
demonstrated in Sec. 3. After a node generation along the domain boundary (
Sec. 3.1), in next steps interior of the domain is discretized by adding internal
nodes that are generated at the same time together with corresponding
elements which is similar to Peraire et al. methodology [9], however, positions
of these new nodes are chosen differently according to the manner described
in Sec. 3.2. Further steps improve the quality of the mesh by applying the
Delaunay criterion to triangular elements (Appendix E) and by a node shifting
based on the Metropolis rule (Sec. 4).

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^ O. C. Zienkiewicz and Y. K. Cheung, Finite elements in the solution of field problems, The Engineer, pp. 507-510
1965; O. C. Zienkiewicz, P. Mayer and Y. K. Cheung, Solution of anisotropic seepage problems by finite elements, J. Eng.
Mech., ASCE, 92, pp. 111-120, 1966; O. C. Zienkiewicz, P. L. Arlett, and A. K. Bahrani, Solution of three – dimensional
field problems by the finite element method, The Engineer, 1967; L. R. Herrmann, Elastic torsion analysis of irregular
shapes, J. Eng. Mech., ASCE, 91, pp. 11-19, 1965; A. M. Winslow, Numerical solution of the quasi-linear Poisson
equation in a non-uniform triangle 'mesh', J. Comp. Phys., 1, pp. 149-172, 1966; M. M. Reddi, Finite element solution of
the incompressible lubrication problem, Trans. Am. Soc. Mech. Eng., 91:524 1969

3.^ R. W. Clough, The finite element method in structural mechanics, In O. C. Zienkiewicz and G. S. Holister,
editors, Stress Analysis, Chapter 7. John Wiley & Sons, Chichester, 1965

4.^ Nodes are mainly situated on the boundaries of elements, however, can also be present in their interior.

5.^ A. Bowyer, Computing Dirichlet tessellations, Comp. J., 24(2), pp. 162-166, 1981; D. F. Watson, Computing the
n-dimensional Delaunay tessellation with application to Voronoi polytopes , Comput. J., 24(2), pp. 167-172 1981; J. C.
Cavendish, D. A. Field and W. H. Frey, An approach to automatic three-dimensional finite element mesh generation, Int. J.
Numer. Meth. Eng., 21, pp. 329-347 1985;N. P. Weatherill, A method for generating irregular computation grids in multiply
connected planar domains, Int. J. Numer. Meth. Eng., 8, pp. 181-197 1988; W. J. Schroeder, M. S. Shephard,
Geometry-based fully automatic mesh generation and the Delaunay triangulation, Int. J. Numer. Meth. Eng., 26, pp.
2503-2515 2005; T. J. Baker, Automatic mesh generation for complex three-dimensional regions using a constrained
Delaunay triangulation, Eng. Comp., 5, pp. 161-175 1989; P. L. Georgea, F. Hechta and E. Saltela, Automatic mesh
generator with specific boundary, Comp. Meth. Appl. Mech. Eng., 92, pp. 269-288 1991

6.^ S. H. Lo, A new mesh generation scheme for arbitrary planar domains, Int. J. Numer. Meth. Eng., 21, pp.
1403-1426 1985; J. Peraire, J. Peiro, L. Formaggia, K. Morgan, O. C. Zienkiewicz, Finite element Euler computations in
three dimensions , 26, pp. 2135-2159 2005; R. Löhner, P. Parikh, Three – dimensional grid generation by the advancing
front method , Int. J. Num. Meth. Fluids 8, pp. 1135-1149 1988

7.^ M. A. Yerry, M. S. Shephard, Automatic three-dimensional mesh generation by the modified-octree technique,
Int. J. Numer. Meth. Eng., 20, pp. 1965-1990 1984; P. L. Baehmann, S. L. Wittchen, M. S. Shephard, K. R. Grice, and M.
A. Yerry, Robust, geometrically-based, automatic two-dimensional mesh generation, Int. J. Numer. Meth. Eng., 24, pp.
1043-1078 1987; M. S. Shephard and M. K. Georges, Automatic three-dimensional mesh generation by the finite octree
technique, Int. J. Numer. Meth. Eng., 32, pp. 709-749 1991

8.^ O. C. Zienkiewicz and D. V. Phillips, An automatic mesh generation scheme for plane and curved surfaces by
isoparametric coordinates, Int. J. Numer. Meth. Eng., 3, pp. 519-528 1971

9.^ J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, Adaptative remeshing for compressible flow
computations, J. Comp. Phys. 72, pp. 449-466, 1987

Finite Element Method. Mathematical Basis.
The finite elements method (FEM) is based on the idea of division the whole
domain Ω into a number of finite sized elements or subdomains Ωi in order to
approximate a continuum problem by a behavior of an equivalent assembly of
discrete finite elements [1].
 In the presence of a set of elements Ωi the total integral over the domain Ω is
represented by the sum of integrals over individual subdomains Ωi

∫ L (u, ∂u/∂x, ...)dΩ= ∑i ∫ L(u, ∂u/∂x, ...) dΩi

Ω Ωi

∫ L(u, ∂u/∂x, ...) dΓ= ∑i ∫ L(u, ∂u/∂x, ...)dΓi,

Γ Γi

where L(u, ∂u/∂x, ...) denotes a differential operator.
The continuum problem is posed by appropriate differential equations (e. g.
Laplace or Poisson equation) and boundary conditions that are imposed on the
unknown solution φ. The general procedure of FEM is aimed at finding an
approximate solution φA given by the expansion:

(∗)

φ ∼ φA= ∑j φA
j Nj = φA

j Nj,

where Nj (j = 1, ..., n) are shape functions (basis functions or interpolation

functions) [1 , 2] and all or the most of the parameters φA
j remain unknown.

After dividing the domain Ω, the shape functions are defined locally for
elements Ωi. A typical finite element is triangular in shape and thus has three
main nodes. It is easy to demonstrate that triangular subdomains fit better to
the boundary Γ than others e. g. rectangular ones. Among the triangular
elements family one can find linear, quadratic and cubic elements [1] (see also
Appendix A). A choice of an appropriate type of subdomains depends on a
desired order of approximation and thus arises directly from the continuum
problem. The higher order of element, the better approximation. Each triangular
element can be described in terms of its area coordinates Li

1, Li
2 and Li

3.

There are general rules that govern the transformation from area coordinates to
Cartesian coordinates

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3

1 = L1 + L2 + L3
→(

L1

L2

L3
) =(

x1 x2 x3

y1 y2 y3

1 1 1
)

-1

(
x

y

1
)

where set of pairs (x1, y1), (x2,y2), (x3, y3) represents Cartesian nodal

coordinates. In turn the area coordinates are related to shape functions in a
manner that depends on the element order. In further analysis only the linear
triangular elements will be used. For them, the shape functions are simply the
area coordinates (see Appendix A). Therefore, each pair of shape functions Ni

k

(x,y), Ni
l(x,y) for k,l=1,2,3 could be thought as a natural basis of the Ωi

triangular element.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^ A. Kendall, H. Weimin, Theoretical Numerical analysis, A Functional Analysis Framework, Third Edition.,
Springer 2009

3.^ the Einstein summation convention

Finite Element Method. Mathematical Basis.

Integration upon Elements.
We shall consider the linear expression derived in the Appendix B[1, 2 , 3]

δ φA T(KφA+ f) =∫ δφ(-ε ∂2/∂x2 - ε∂2/∂y2)φ(x, y) dxdy +∫ δφρ(x, y) dxdy = 0

Ω Ω

with the boundary condition φ = γ on Γ. In such a simply case of integral –
differential problems with a differential operator L = -ε∂2/∂x2 - ε∂2/∂y2, the
variable φ in the above – written equation only consists of one scalar function φ

which is the sought solution, while the constant vector f is represented by the
last term in that expression. To find the solution for such a problem means to
determine the values of φ(x,y) in the whole domain Ω. The values of φ on its
boundary Γ are already prescribed to γ. On the other hand, at the very
beginning (see Eq. (2) in the previous page) we have postulated that a function
φ could be approximated by an expansion φA given by means of some basis

functions Nm(x,y), m = 1, ...,n (for more details see Appendix A). Thus another

possibility to deal with the Poisson problem is just to start from the functional Π
and build a set of Euler equations ∂Π/∂φm = 0 where m = 1, ..., n and φm

approximates value of the solution φ calculated at the m-th mesh node.

Π= ∫ [1/2ε ∑l (∂Nl/∂x φl)2 + 1/2ε∑l (∂Nl/∂y φl)2 + ρ∑l Nl φ
l] dxdy +

Ω

+ ∫ (γ- 1/2∑l Nlφ
l)∑k Nk φk dΓ

Γ

and after that we calculate the derivative ∂Π/∂φA,m. Moreover, let's simplify our

problem by neglecting the last term in the above – presented equation and
imposing φ = γ on the boundary Γ instead. In that manner, one obtains the
expression

∂Π/∂φA,m= ∫ [ε ∑l (∂Nl/∂x φl)∑k ∂ Nk/∂x δk
m

Ω

+ ε ∑l (∂ Nl/∂y φl)∑k ∂Nk/∂y δk
m + ρ∑l Nl δ

l
m] dxdy = 0

or in a simplified form

∂Π/∂φA, m=∑l (∫ ε(∂Nl/∂x ∂Nm/∂x + ∂Nl/∂y ∂Nm/∂y) dxdy) φl+ ∫ ρNmdxdy = 0.

Ω Ω
It is worth mentioning that some requirements must be imposed on the shape
functions N. Namely, if n-th order derivatives occur in any term ofL then the
shape functions have to be such that their n-1 derivatives (pay an attention to
the above – presented equation) are continuous and finite. Therefore, generally
speaking Cn-1 continuity of shape functions must be preserve.

In turn, after substituting

Km
l =ε ∫ (∂Nl/∂x ∂Nm/∂x + ∂Nl/∂y ∂Nm/∂y)dxdy

Ω

fm= ∫ ρNmdxdy

Ω

finally one obtains a set of equations

∂Π/∂ φm=∑l Km
lφ

l + fm= 0

for m, l = 1, ..., n or in matrix description

∂Π/∂φ= Kφ+ f = 0.

It is worth noticing that the matrix K is a symmetric one because of the
symmetry in exchange of subscripts l and m in the equation.
Now, we are obliged to employ the division of our domain Ω into a set of
subdomains Ωi. It gives that

Km
l= ∑i Kim

l= ∑i ∫ ε(x,y) (∂Ni
l(x,y)/∂x∂Nim(x,y)/∂x +∂Ni

l(x,y)/∂y∂Nim(x,y)/∂y) dxdy

Ωi

fm= ∑i fim= ∑i ∫ ρ(x,y) Nim(x,y) dxdy.

Ωi

Therefore, after the transformation to I subdomains the expression becomes

∑i Kim
l φ

l+∑i fim= 0

for i = 1, ..., I and m = 1, ..., n. Or in matrix notation

φA = -K-1f

In fact, the summation written above takes into account only these elements Ωi
which contribute to m-th node, however, because of the consistency in notation
all elements are included in the sum with the exception that those Ni

m

functions for which node m does not occur in i-th element are put equal zero.
From now, the whole story is to calculate integrals

Kim
l = ∫ ε(x, y) (∂Ni

l (x, y)/∂x ∂Nim(x, y)/∂x + ∂Ni
l (x, y) /∂y ∂Nim (x, y)/∂y)dxdy

Ωi

1 1-L1

= ∫ dL1 ∫ dL2 ε(L1, L2, L3) |det Ji| (∇ NilT TT ∇T Nim),

0 0

1 1-L1

fim = ∫ ρ(x,y) Nim (x,y) dxdy = ∫ dL1 ∫ dL2 |det Ji| ρ(L1,L2,L3) Nim(L1, L2, L3)

Ωi 0 0

where Ni
m = Li

m, L3 = 1 - L1 - L2 (see Appendix A) whereas det(Ji) – the

Jacobian of i-th element, T matrix together with ∇ operator in new coordinates

are evaluated in Appendix C.
An integration over the i-th subdomain Ωi, which is a triangular element with
three nodes, enforces the transformation from n-dimensional global
interpolation to the local interpolations given by means of Nik(x,y) functions

where ik = 1, 2, 3. That is why in equations new indices il,im appear which

further are allowed to take three possible values 1,2 and 3 for each element i
(the local subspace).
As the next step, the Gauss quadrature is employed to compute above-written
integrals numerically as it is described in the Appendix D.
And finally, after incorporating boundary conditions to equations by inserting
appropriate boundary values of φ, the system of equations can be solved.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^ A. Kendall, H. Weimin, Theoretical Numerical analysis, A Functional Analysis Framework, Third Edition.,
Springer 2009

3.^ R. Courant, D. Hilbert, Methods of Mathematical Physics, Volume 1, Interscience Publisher, New York, 1953

Finite Element Method. Mesh generation.

Initial mesh
The domain Ω is a set of points in two – dimensional Euclidean plane ℜ 2. The
initial mesh should define the shape of the domain Ω or more precisely its
boundary ∂Ω. Let us denote the bd(Ω) as Γ. It could form a smooth curve (like
a circle) or be a polygon. At the beginning it is necessary to assign the initial
set of nodes belonging to Γ. Taking into account polygon it is obvious that the
initial mesh must consist of its vertices, however, in the case of a smooth curve
one can choose the initial mesh differently. In the article, the author
concentrate on the polygonal domains (see Fig. 1) that can be formed from a
smooth curve after placing some initial nodes on its boundary Γ and connecting
them by line segments (chords).

Fig. 1. Figure presents the domain ΩA and its boundary ΓA after projection to

the polygonal domain. It has eight boundary nodes and one central node.
Comparing both the initial Ω and the polygonal ΩA domain one can notice that

such a simple projection gives rather rough correspondence between them a),
however, in some cases it could be a sufficient one i. e. when an integrated
function changes very slowly in some δ – thick neighborhood of the boundary Γ
b).
Let us start with determining the principal rectangular super domain as a
Cartesian product

[xmin, xmax]×[ymin, ymax]:={(x, y):x∈ [xmin, xmax], y∈ [ymin, ymax]}

where the domain Ω is embedded in this super domain. This object is
introduced due to a mesh creation procedure presented here.

Ω∈ [xmin, xmax]×[ymin, ymax]

The following function meshinit (vertices, radius) where the variable vertices

determines the number of its sides and the second one gives the radius of its
circumscribed circle. For instance, one can make use of the Octave GNU
project (free open source) and create both the initial nodes p and the initial
triangles t arrays in the case of regular polygon of N vertices and lying within a
circumscribed circle with a given radius. Following further steps of the algorithm
presented in next sections, one can obtain meshes for different domains Ω
(see few examples in Fig. 2).

https://www.taketechease.com/fem/fem2d/metfem2d_mesh_online.html

Let us introduce a measure that estimates an element area in respect to the
prescribed element area S designed by the element size h. The measure SN =

Selem/S gives a normalized area for each element. An estimation of the

average deviation from assumed value of the element area provides
information of mesh quality in the case for their fairly uniform distribution.

Fig. 2. Figure shows four domains Ω having different shapes. In brackets,
finally established set of parameters is written: Np – number of mesh points,

 Ndivisions – number of divisions (according to Sec. 3.2), SA, N – a normalized

average element area are presented; a) regular polygon – square (258, 8,
1.002); b) regular polygon with 16 nodes (376, 6, 1.026) which approximates
circular shape well; c) non – regular, convex figure (315, 8, 1.01); d) non –
regular, semi – convex figure (247, 6, 1.071); and two non – regular, non –
convex figures e) (245, 7, 0.993) and f) (164, 6, 1.0003) both with weight =
[0.25, 0.75].

References

1.^ The source code of Octave is freely distributed GNU project, for more info please go to the following web page
of Octave.

Mesh generator.

Adding new nodes to the mesh
In this section, let us start with the procedure that allows us to add new mesh
nodes to the existing ones.The initial configuration of the nodes were already
defined. It must define well the shape of the divided area in aspects explained
in the description of the Figure 3. These initial nodes are called the constant
nodes and are kept immobile through the rest of the algorithm steps. Each
triangle could be split up into two new triangles by adding a new node to its
longest bar. To avoid producing triangles much smaller than defined by the
element size h only part of them could be broken up i. e. these for which the
triangle area is one and half times bigger than A. That condition is set in the
algorithm by introducing a new control parameter Csplit. The new node is

added in the middle of the triangle longest bar.

http://www.gnu.org/software/octave/

Fig. 3 presents a division process of non – regular and circular domains
together with their boundaries. Pictures a) and c) show meshes with new
nodes. Some of them are of the illegal type (defined in Sec. 3.2). These nodes
constitute starting points for next complementary division that transforms such
not well – defined elements into the correct ones, see pictures b) and d).
There is a need to underline that presented above algorithm is not quite optimal
because some of the new nodes could produce triangles with one edge divided
by a node resulting from splitting up an adjacent triangle (see Fig. 3). Such
triangles are not desirable [1] and are denoted as illegal (see Figure 3a) and
Figure 3c)). Thus the previous procedure needs to be improved. Let us add a
few extra steps to it:
For each triangle Tk ∈ Ω perform checking whether it is of illegal type. If so,

split it up into two new properly defined triangles by connecting so – called
illegal node with the vertex of Tk lying oppositely to it. Remove the old Tk

triangle. That is it.
Figures Fig 3b) and Fig 3d) show meshes having only desired elements.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

Mesh generator.

The boundary of the domain
The one of the most important issues to define is the domain boundary. After
determining the boundary ΓA by the initial constant nodes (lines 1-18 of the

presented below algorithm), the next task is to determine which new nodes are
lying on boundary line segments Γ (as it is visible in Fig. 4). These selection is
done with a help of the following algorithm:

1.For an initial node table p (nodes from 1 to N) find all pairs of neighbouring
vertices.

2.Connect them by a segment line. If x1 - x2 ≠ 0 then a function y=ax+b

exists and one can find pairs a, b for each such a line segment otherwise a
vertical line x = a together with limits [y1, y2] must be found.

3.Establish the table of coefficients a, b.
4.For each new node check whether its coordinates (x, y) fulfill any of y=ax

+ b equations or x = a where y < y2 and y > y1

5.If yes classify it as a boundary node else classify it as an internal node.

Fig. 4 presents the square domain divided into a set of new elements Ωi with
corresponding set of line segments Γi being its boundary. A way of finding new
nodes constitutes the main point of the mesh generation process (see Sec. 3.2)
while a selection of nodes is perform according to the algorithm from Sec. 3.3
a) nodes a,b,c,d have been classified as boundary nodes whereas b) nodes
e,f,g have been determined as internal nodes.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

Generator Optimization via the Metropolis
method
Let us define the set of mesh triangles Ω = { Tj, j = 1, 2, ..., M } and a set Ti of

triangle mesh elements to which a node pi belongs. The closest neighbors C(pi

) of the mesh point pi are defined as a subset of mesh points pj ∈ Ti

∀ pi ∃ T
i ⊂ Ω: pi ∈ T

i C(pi) = { pj: pj ∈ T
i where pj ≠ pi}.

Note, that the closest region is not the same what the Voronoi region [1].
Presented definition is needed to proceed with the Metropolis algorithm [2]
which will be applied in order to adjust triangle's area to the desired size given
by the element size h.
In turn, a proper triangulation is the essence of the finite element method as it
is stated in the Sec. 2. Let us divide the whole problem into two different tasks.
The first one focuses on finding an optimization for mesh elements being the
internal elements whereas the second one is developed for so – called the
edge elements. They are the elements for which one triangle's bar belongs to
the boundary Γ of the domain Ω. It is assumed that a proper triangulation gives
a discrete set of triangles Tj which approximates the domain Ω well.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^N. Metropolis, S. Ulam, The Monte Carlo Method, J. Amer. Stat. Assoc., 44, No. 247., pp. 335-341, 1949

Generator Optimization via the Metropolis
method

 Internal mesh elements
Presented method is based on the following algorithm[1, 2]:

1.Define the element size h and consequently the element area A.
2.Initialize the configuration of triangles and then select the internal nodes P

int = { pi: pi ∈ P ∧ pi ∉ Γ } i. e. these nodes does not belong to the domain

boundary Γ.
3.For each node pi in Pint find its subdomain Ωi defined as a set of triangles

Ti to which the node pi belongs.

4.Perform the Metropolis approach to every internal node pi within its

subdomain Ωi. The Metropolis algorithm is adopted in order to adjust an area of
each triangle in the node's subdomain to prescribed value A by shifting the
position of the node pi (Fig. 5 demonstrates robustness of the Metropolis

approach; compare the node distribution in a) and in b)). That adjustment is
governed by the following rules:

4.1.Find an area of each triangle Ak (where k = 1, 2, ..., K) in Ωi together

with the vectors rji = pi - pj for each pj ∈ Ωi connected to node pi

4.2.Calculate the length of each triangle edge |rji| and its deviation δ |rji|

from the designed element size h i. e. δ |rji| = |rji| - h

4.3.Calculate the new position of the node pnew
i as

pnew
i=pi- ∑j Fj δ |rji| versor(rji)

where versor(rji) (i. e. an unit vector) has the standard meaning as rji/|rji| and

Fj are weights corresponding to magnitude of j-th force applying to node pi.

Finally, they were set to the constant value F.
4.4.Find an area of each triangle Anew

k ∈ Ωi after shifting pi → pnew
i

4.5.Apply an energetic measure E to a sub – mesh Ωi. That quantity
could be understand in terms of a square deviation of a mesh element area
from the prescribed element area A. Therefore, in the presented paper the δ E
is defined as a sum of a discrepancy between each triangle area Ak and A after

moving node pi and prior it, respectively

δE =∑k ((Anew
k - A)2 - (Ak - A)2) k = 1, 2, ..., K.

If the obtained value of an energetic change is lower than zero the change is
accepted. Otherwise, the Metropolis rule is applied i. e. the following condition
is checked

e-δE⁄T>r

where r is an uniformly distributed random number on the unit interval (0, 1)
and T denotes temperature.

4.6.The above – presented algorithm is repeated unless an assumed
tolerance will be achieved.
In order to reach a better convergence of the presented method several other
improvements could be adopted. For instance, the change in the length of the
triangle edge could be an additional measure of mesh approximation
goodness. That condition will ensure a lack of elongated mesh elements i. e.
elements with very high ratio of its edge lengths (to see such skinny elements
look at Fig. 5a)).

Figure shows an application of the Metropolis algorithm. Picture a) presents
initial positions of new nodes just after generating them whereas picture b)
shows their positions after node shifts according to the procedure described in
Sec. 4.1 with the following two values of the force strength Fj: 0.006 and 0.1

applied to each internal node j = 1, ..., 7 and temperature set as T = 0.01. The
table presents the total number of Metropolis steps that was required to obtain
the final result shown in b).

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^ N. Metropolis, S. Ulam, The Monte Carlo Method, J. Amer. Stat. Assoc., 44, No. 247., pp. 335-341, 1949

Generator Optimization via the Metropolis
method

 Boundary mesh elements
The Metropolis algorithm[1, 2] applied to boundary nodes slightly differs from
the above– described case and could be summarize in the following steps:

1.Find all the boundary or edge nodes i. e. nodes for which pk, edge ∈ Γ.

2.Find triangles in the closest neighborhood of the considered pk,edge

node. Then calculate an area of each triangle Al,edge.

3.Calculate the force acting on each boundary node and coming only from
nodes connected to it (as previously).

J

Fk= - ∑ Fboundary δ |rjk| versor(rjk)

j=1

where J denotes the total number of nodes linked to the k-th node and δ|rjk| is

defined as previously. Let us impose the following constrain on the motion of
the k-th node in order to keep it in the boundary Γ. The force must be tangential
to the boundary Γ so the boundary projection of the force Fk must be found:

Fk, Γ= versor(LΓ) (LΓ ⋅Fk) / |LΓ|

where LΓ denotes a vector lying along boundary Γ.

4.Similarly, find an area of each triangle Anew
l,edge after shifting pk,edge →

 pnew
k,edge according to the force Fk.

5.Adopt the Metropolis energetic condition to the boundary case i.e.

δE =∑l ((Anew
l, edge - A)2 - (Al, edge - A)2) l = 1, 2, ..., L.

If

e-δE⁄T>r

the new configuration is accepted otherwise is rejected. T denotes temperature
and a random number r ∈ U(0; 1) as previously.

6.The main point of this part is to ensure that the boundary nodes are
moved just along the boundary Γ.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^ N. Metropolis, S. Ulam, The Monte Carlo Method, J. Amer. Stat. Assoc., 44, No. 247., pp. 335-341, 1949

The Lagrange polynomials.

The Lagrange polynomials pk(x) are given by the general formula [1, 2]

n

pk(x) = ∏ (x - xi)/(xk - xi)

i=1

i ≠k

for k = 1, ..., n.
It is clearly seen from the above – given expression that for x = xk pk(xk) = 1

and for x = xj such that j ≠ k pk(xj) = 0. Between nodes values of pk(x) vary

according to the polynomial order i. e. n-1 which is the order of interpolation.
Making use of these polynomials one can represent an arbitrary function φ(x)
as

φ(x) =∑k pk(x) φk
On the other hand, when the interpolated function φ depends on two spacial
coordinates one can define basis polynomials in the form

pm(x, y) ≡ pIJ (x, y) = pI(x) pJ(y),

where I J describe row and column number for the m-th node in a rectangular
lattice (rows align along x and columns along y direction, respectively). And
consequently, the set {p1, ..., pm, ..., pn} is a basis of a n – dimensional

functional space because each function pm for m = 1, ..., n equals 1 at the

interpolation node (xm, ym) and 0 at others. It is easy to demonstrate that such

functions are orthogonal[2]. Instead of spacial coordinates any other
coordinates can be considered. In the case of mesh elements the natural
coordinates are the area coordinates L defined already in the Sec. The
mathematical concept of FEM. On that basis the shape functions could be
constructed as a composition of these three basis polynomials i. e. Nm(L1,L2,L

3) = pa
I(L1)pb

J(L2)pc
K(L3) where the values of a, b and c assign the

polynomial order in each Lk-th coordinate and I, J and K denote the m-th node

position in a triangular lattice (i. e. in the coordinates L1, L2 and L3,

respectively).
In the [1] could be found a comprehensive description of various elements
belonging to the triangular family starting from a linear through quadratic to
cubic one. For simplicity, in the article only the linear case is looked on. It
explicitly means that shape functions Nk = Lk(x, y), where k = 1, 2, 3, change

between two nodes linearly (see Eq. (3)).

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^ A. Kendall, H. Weimin, Theoretical Numerical analysis, A Functional Analysis Framework, Third Edition.,
Springer 2009

Variational principles

We shall now look on the left hand of the Eq. (1) i. e. the integral expression Π

Π= ∫ L(u, φ, ∂φ/∂x, ∂φ/∂y, ...) dΩ.

Ω

We are aimed at determining the appropriate φ continuous function for which
the first variation δΠ vanish. If

δΠ = κ (d/dκ Π[φ + κη])κ = 0= 0

for any δφ then we can say that the expression Π is made to be stationary [1].
The function φ is embed in a family of functions
φ+δφ=φ(x, y) +κη(x, y)
 with the parameter κ. The variational requirement (equation above) gives
vanishing of the first variation for any arbitrary η. In the presented article, the
variational problem is limited to the case in which values of desired function φ
at the boundary of the region of integration i. e. at the boundary curve Γ are
assumed to be prescribed. Generally, the first variation of has the form

δΠ = ∂Π/∂φ δφ+∂Π/∂φx δ(φx) +∂Π/∂φy δ(φy) + ...

and vanishes when

∂Π/∂φ= 0,∂Π/∂φx= 0, ∂Π/∂φy = 0, ...

The condition above – presented gives the Euler's equations. Moreover, if the
functional is quadratic i.e. if all its variables and their derivatives are in the
maximum power of 2, then the first variation of has a standard linear form

δΠ ≡ δ φT(K φ+ f) = 0,

which represents, though, in matrix notation. A vector φ denotes all variational
variables i. e. φ and its derivatives as it is written in Euler eqs. K denotes
stiffness matrix (the FEM nomenclature [2]) and f is a constant vector (does
not depend on φ). We are interested in finding solutions to the Poisson and the
Laplace differential equations under some boundary conditions. These classes
of differential problems can be represent in such a general linear form. Now,
we construct a functional Π which the first variation gives the Poisson – type
equation. Firstly, we define the functional Π in the form:

Π= ∫ [ε/2 (∂φ/∂x)2 + ε/2 (∂φ/∂y)2 + ρφ] dxdy +∫ (γ - 1/2φ)φdΓ,

Ω Γ

where dΓ = (dx2 + dy2)1/2, ρ, γ andε can be functions of spacial variables x
and y. Secondly, we find the first variation of Π

δΠ= ∫ [ε ∂φ/∂x δφx + ε ∂φ/∂yδφy + ρδφ] dxdy +∫ (γ - φ)δφdΓ,

Ω Γ

where δφx = ∂(δφ)/∂x. And after integration by parts and taking advantage of the

Green's theorem [2] one can simplify the above – written equation to the form

δΠ= ∫ [-ε ∂2φ/∂x2 - ε ∂2φ/∂y2 + ρ] dxdy +∫ ε δφ ∂φ/∂n dΓ+∫ (γ - φ)δφdΓ= 0,

Ω Γ Γ

where ∂φ/∂n denotes the normal derivative to the boundary Γ. The expression
within the first integral constitutes the Poisson equation

-ε ∂2φ/∂x2 - ε ∂2φ/∂y2 + ρ= 0in Ω

whereas the second term in the main equation gives the Neumann boundary
condition

ε ∂φ/∂n = 0on Γ

and the third one represents the Dirichlet boundary condition

φ = γ on Γ

 Note. The above – presented calculation demonstrates a way in which one
can incorporate the boundary conditions of Neumann or Dirichlet type into a
variational expression Π. However, an appropriately formulated boundary –
value problem must include only one kind of b.c. (Neumann or Dirichlet b.c.)
defined on the whole boundary Γ or it is permitted to mix them but only in not
self – overlapping way.

References

1.^ R. Courant, D. Hilbert, Methods of Mathematical Physics, Volume 1, Interscience Publisher, New York, 1953

2.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

Transformation in local L -coordinates
Let us compute the determinant of the Jacobian transformation between the
global x, y and a local L1, L2, L3 coordinate frame. One notices immediately

that the problem is degenerate. That is why, we introduce a new coordinate z

as a linear combination of L1, L2, L3 i. e. z = L1 + L2 + L3. Note that z is not an

independent coordinate and has a constant value equal 1. After taking into
account relations Eq. (3) we find the Jacobian matrix in the form

J(L1, L2, L3) ≡ ∂(x, y, z)/∂(L1, L2, L3) =

(
∂x/∂L1 ∂x/∂L2 ∂x/∂L3

∂y/∂L1 ∂y/∂L2 ∂y/∂L3

∂z/∂L1 ∂z/∂L2 ∂z/∂L3) =(
x1 x2 x3

y1 y2 y3

1 1 1
)

Furthermore, we have the relation between the Jacobian and an element area

det(J)≡2∆,

where ∆ denotes the area of a triangle which is based on vertices (x1, y1), (x2,

y2), (x3, y3). And finally, we obtain the coordinates transformation rule

dxdy = 2∆dL1dL2, and L3 = 1 - L1 - L2.

The relation between the gradient operator ∆ in cartesian and in new
coordinates is given by:

[∂/∂x, ∂/∂y] = [∂L1/∂x ∂/∂L1 + ∂L2/∂x ∂/∂L2 + ∂L3/∂x ∂/∂L3,

∂L1/∂y ∂/∂L1 + ∂L2/∂y ∂/∂L2 + ∂L3/∂y ∂/∂L3]

[∂/∂x, ∂/∂y] = 1/(2∆) [∂/∂L1, ∂/∂L2, ∂/∂L3](
a1 b1

a2 b2

a3 b3
) = [∂/∂L1, ∂/∂L2, ∂/∂L3] T

where Lk = (akx + bky + ck)/(2∆) (k = 1, 2, 3) and a1 = y2 - y3, b1 = x3 - x2, c1

= x2y3 - x3y2, the rest of coefficients is obtained by cyclic permutation of

indices 1, 2 and 3.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

Numerical integration - Gauss's quadrature
The l.h.s integral I can be approximated by the Q - point Gauss quadrature [1,
2,3, 4]

1 1 Q

I = ∫ dL1 ∫ dL2 |det J| f(L1, L2, L3) ∼ ∑ fq(L1, L2, L3)Wq

0 0 q=1

where Wq denotes the weights for q - points of the numerical integration, and

can be found in the Table 5.3 in [1]. As it was already said, a set of Nk(L1, L2,

L3) shape functions where k = 1, 2, 3 can be used to evaluate each f function

in the interpolation series which, for instance, in the highest order 10 – nodal
cubic triangular element has the following form

3 9

f(L1, L2, L3) = ∑ Nk(L1, L2, L3)fk+ ∑ Nk(L1, L2, L3)∆fk+ N10∆∆f10

k=1 k=4

where fk are nodal values of f function, fk denote departures from linear

interpolation for mid – side nodes, and f10 is departure from both previous

orders of approximation for the central nodeC
[1]. For linear triangular elements

only the first term is important which gives an approximation

f(L1, L2, L3) = ∑ Lkfk

k=1

Note, that the r.h.s sum does not include the Jacobian j det Jj that should be

incorporated by the weights Wq but it is not (in their values given in Table 5.3

from [1]). Thus let's add the triangle area to the above – recalled formula

|det J|/(2∆) ∑ fq(L1, L2, L3)Wq

q=1

and in that way we end up with the final expression for the Q – point Gauss
quadrature.

References

1.^ O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth
edition., Elsevier 2005

2.^R. Radau, Etude sur les formules d'approximation qui servent calculer la valeur d'une integrate definie, Journ. de
Math. 6(3), pp. 283-336, 1880

3.^P. C. Hammer and O. J. Marlowe and A. H. Stroud, Numerical Integration Over Simplexes and Cones, Math.
Tables Aids Comp., 10, pp. 130-137, 1956

4.^F. R. Cowper, Gaussian quadrature formulas for triangles, Int. J. Numer. Meth. Eng., 7, pp. 405-408, 1973

Delaunay triangulation algorithm
Let's remind briefly the main points of the Delaunay triangulation method[1]
together with their numerical implementation using Octave and Matlab software
[2]. Let P = {pi, i = 1, 2, ... ,N} be a set of points in two – dimensional Euclidean

plane ℜ 2. They are called forming points of mesh [1]. Let us define the triangle
T as a set of three mesh points

T = {tj ∈P, j = 1,2,3}.

Definition of Delaunay zones
Using the Delaunay criterion one can generate triangulation where no four
points from the set of forming points P are co – circular:

∀ pi ∈ P ∧ pi ∉T ||pi - u|| > ρ2

where u is the center of the T triangle and ρ is its radius. The proposed
algorithm consists of the following steps:

● The triangle's bars are given by the following vectors t12, t13, t23 where

tij = tj - ti, ti = [txi, t
y
i, 0] for each i ≠ j and i, j ∈ {1, 2, 3}.

●The cross product of each triangle bars defines a plane. The pseudo
vector A together with its projection on the normal to the plane n – direction An

are found

A = t12 - t13

An = n ⋅A

in order to determine the triangle orientation. If the quantity An > 0 the triangle

orientation is clockwise, otherwise is counterclockwise.

●The determinant of the square matrix D(T) is built on the basis of the set of
triangle's nodes given by the equation

D(T) = det(
tx1 ty1 (tx1)2 + (ty1)2

tx2 ty2 (tx2)2 + (ty2)2

tx3 ty3 (tx3)2 + (ty3)2)

Figure shows the main idea of the Delaunay criterion. a) Two triangles (with
nodes abc and acd, respectively) are not Delaunay triangles, b) after exchange
of the edge ac to the edge bd two new triangles abd and bcd replace the old
ones. They are both of the Delaunay type. Circles represent the Delaunay
zones.
next the following determinant is calculated in order to find out whether a mesh
point pi is outside or inside the Delaunay zone (see Fig. 13)

D(T)i= det(
tx1 ty1 (tx1)2 + (ty1)2 1

tx2 ty2 (tx2)2 + (ty2)2 1

tx3 ty3 (tx3)2 + (ty3)2 1

px
i py

i (px
i)
2 + (py

i)
2 1
)

for each pi ∈ P ∧ p i ∉ T.

●If for any point pi its D(T)i < 0 the triangle T is not the Delaunay triangle

(see Fig. 13a). Then one need to find other triangles in the closest
neighborhood of the triangle T corresponding to the number of pi inside the

Delaunay zone and recursively exchange the bars between T and each of them
(see Fig. 13b).

●Finally, checking whether the new two triangles are the Delaunay triangles
takes its place. If so, new ones are accepted unless the change is canceled.

The algorithm ends up with the new triangular mesh Ωnew.

If you wish you can have an insight into the program
delaunayTakeTechEase.m that implements the above – presented algorithm
using the Octave and Matlab software (it is a part of a free Octave and Matlab
course). One can use also the appropriate Octave and Matlab library function.
Help. In order to find an orientation of a triangle T one can check the sign of An

(see equation). If it is greater than 0 the triangle orientation is clockwise unless
counterclockwise. In the latter case, to ensure the clockwise orientation one
can once flip up and down matrix in equation then the triangle orientation turns
into the opposite one. Obviously, this flipping results in the change of the sign
of the matrix determinant D(T) → -D(T).

References

1.^ B. Delaunay, Sur la sphre vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh
Nauk, 7, pp. 793-800, 1934

2.^The source code of Octave is freely distributed GNU project, for more info please go to the following web page
http://www.gnu.org/software/octave/.

Last update: April 2, 2019
© 2013-2019 taketechease.comPrivacy PolicyTerms of Use

https://www.taketechease.com/omc/mfiles/delaunayTakeTechEase.m
https://www.taketechease.com/indexoctave.html
https://www.taketechease.com/indexoctave.html
https://www.taketechease.com/fem/fem2d/solver2d_metfem2d.html
https://www.taketechease.com/PrivacyPolicy.html
https://www.taketechease.com/TermsOfUse.html

